

Fig. 3. Stereoscopic view of the molecular packing.

Fig. 3 shows that the molecular packing is essentially due to hydrogen bonds which arise between the piperidine N of one molecule and the alcohol O atom of the one opposite, in order to form a dimeric association.

We thank Dr P. A. J. Janssen (Janssen Pharmaceutica, B-2340 Beerse, Belgium) for providing the sample, and l'Institut pour l'Encouragement de la Recherche Scientifique dans l'Industrie et l'Agriculture (IRSIA) for the award of a doctoral fellowship to CH .

References

Germain, G., Main, P. \& Woolfson, M. M. (1971). Acta Cryst. A27, 368-376.

Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee.
Stewart, J. M., Kruger, G. J., Ammon, H. L., Dickinson, C. \& Hall, S. R. (1972). XRAY system - version of June 1972. Tech. Rep. TR-192. Computer Science Center, Univ. of Maryland, College Park, Maryland.

Acta Cryst. (1978). B34, 1391-1393

1-Phenyl-1,1'-spirobi[3H-2,1-benzoxaphosphole]-3,3'-dione

By A. Valentina Rivera and George M. Sheldrick
University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, England

(Received 9 January 1978; accepted 21 January 1978)

Abstract

C}_{6} \mathrm{H}_{5} \mathrm{P}\left(\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{O}_{2}\right)_{2}\), monoclinic, $\mathrm{C} 2 / \mathrm{c}, a=$ 25.252 (6), $b=8.549$ (9), $c=15.252$ (6) $\AA, \beta=$ 97.15 (9) ${ }^{\circ}, Z=8, U=3267 \AA^{3}, D_{x}=1.416 \mathrm{~g} \mathrm{~cm}^{-3}$, $\mu(\mathrm{Cu} K a)=15.8 \mathrm{~cm}^{-1}$. The structure was solved by direct methods and refined to an R of 0.036 for 2047 unique diffractometer data. The coordination at P is close to ideal trigonal bipyramidal, with axial O atoms. The mean $\mathrm{P}-\mathrm{O}$ and $\mathrm{P}-\mathrm{C}$ lengths are 1.781 (2) and 1.801 (2) Å respectively.

Introduction. Segall, Granoth, Kalir \& Bergmann (1975) have reported the synthesis of stable spiro bicyclic acyloxyphosphoranes by the spontaneous acidcatalysed intramolecular dehydration of bis (o-carboxyphenyl)phosphine oxides. Structural elucidation of these phosphoranes was based mainly on ${ }^{31} \mathrm{P}$ NMR data. In view of the isolation of the corresponding P hydroxyphosphorane by Segall \& Granoth (1977) crystallographic structural confirmation was desirable, and is reported here for the P-phenyl phosphorane.

Intensities were measured with a Syntex $P 2_{1}$ fourcircle diffractometer, graphite-monochromated Cu Ka radiation, and a crystal $0.15 \times 0.23 \times 0.50 \mathrm{~mm}$. No corrections were applied for absorption. Equivalent reflexions were averaged, reducing the 3364 measured data to 2047 unique reflexions with $F>4 \sigma(F)$ based on counting statistics. Cell dimensions were obtained from the diffractometer settings for 15 strong reflexions. Intensity statistics indicated the space group $C 2 / c$ rather than $C c ; C 2 / c$ was confirmed by the successful structure refinement. All the non-hydrogen atoms were located from the best E map obtained by multisolution Σ_{2} sign expansion; a subsequent difference synthesis revealed the H atoms. The structure was refined by blocked-matrix least squares, with complex neutralatom scattering factors and the weighting scheme $w=$ $\left[\sigma^{2}(F)+0.00037 F^{2}\right]^{-1}$, to $R^{\prime}=\Sigma w^{1 / 2} \Delta / \Sigma w^{1 / 2} F_{o}=$ 0.040 and $R=0.036$. The H atoms were allowed to refine freely, with individual isotropic temperature factors; the remaining atoms were anisotropic. An

Table 1. Atom coordinates ($\times 10^{4}$)

	x	y	z
\mathbf{P}	$1260(1)$	$4498(1)$	$3446(1)$
$\mathrm{O}(11)$	$1769(1)$	$3382(1)$	$3031(1)$
$\mathrm{O}(12)$	$1972(1)$	$998(2)$	$2579(1)$
$\mathrm{O}(21)$	$751(1)$	$5597(1)$	$3875(1)$
$\mathrm{O}(22)$	$582(1)$	$7060(2)$	$5023(1)$
$\mathrm{C}(10)$	$1668(1)$	$1867(2)$	$2890(1)$
$\mathrm{C}(11)$	$1142(1)$	$1447(2)$	$3163(1)$
$\mathrm{C}(12)$	$876(1)$	$2727(2)$	$3462(1)$
$\mathrm{C}(13)$	$377(1)$	$2507(2)$	$3753(1)$
$\mathrm{C}(14)$	$168(1)$	$1010(2)$	$3741(1)$
$\mathrm{C}(15)$	$441(1)$	$-243(3)$	$3441(1)$
$\mathrm{C}(16)$	$930(1)$	$-35(2)$	$3116(1)$
$\mathrm{C}(20)$	$893(1)$	$6311(2)$	$4651(1)$
$\mathrm{C}(21)$	$1462(1)$	$6046(2)$	$4953(1)$
$\mathrm{C}(22)$	$1714(1)$	$5103(2)$	$4391(1)$
$\mathrm{C}(23)$	$2248(1)$	$4744(3)$	$4603(1)$
$\mathrm{C}(24)$	$2519(1)$	$5328(3)$	$5379(2)$
$\mathrm{C}(25)$	$2267(1)$	$6249(3)$	$5937(1)$
$\mathrm{C}(26)$	$1734(1)$	$6630(3)$	$5727(1)$
$\mathrm{C}(31)$	$718(1)$	$5918(2)$	$1950(1)$
$\mathrm{C}(32)$	$1203(1)$	$5713(2)$	$2473(1)$
$\mathrm{C}(33)$	$1653(1)$	$6470(2)$	$2247(1)$
$\mathrm{C}(34)$	$1609(1)$	$7454(3)$	$1527(2)$
$\mathrm{C}(35)$	$1128(1)$	$7642(3)$	$1009(1)$
$\mathrm{C}(36)$	$684(1)$	$6870(3)$	$1209(1)$

Table 2. Hydrogen atom coordinates $\left(\times 10^{4}\right)$ and isotropic temperature factors ($\AA^{2} \times 10^{3}$)

	x	y	z	U
$\mathrm{H}(13)$	$170(8)$	$3364(23)$	$3940(12)$	$54(5)$
$\mathrm{H}(14)$	$-186(9)$	$873(23)$	$3975(13)$	$63(6)$
$\mathrm{H}(15)$	$306(9)$	$-1247(27)$	$3463(13)$	$70(6)$
$\mathrm{H}(16)$	$1123(8)$	$-929(24)$	$2935(12)$	$61(6)$
$\mathrm{H}(23)$	$2421(10)$	$4133(27)$	$4211(16)$	$79(8)$
$\mathrm{H}(24)$	$2894(11)$	$5059(27)$	$5529(15)$	$73(7)$
$\mathrm{H}(25)$	$2449(10)$	$6642(27)$	$6484(16)$	$79(7)$
$\mathrm{H}(26)$	$1553(10)$	$7281(27)$	$6076(16)$	$76(7)$
$\mathrm{H}(31)$	$431(9)$	$5360(23)$	$2116(13)$	$57(6)$
$\mathrm{H}(33)$	$1979(8)$	$6319(21)$	$2580(12)$	$47(5)$
$\mathrm{H}(34)$	$1924(11)$	$8047(31)$	$1415(16)$	$91(8)$
$\mathrm{H}(35)$	$1111(10)$	$8358(28)$	$464(16)$	$83(7)$
$\mathrm{H}(36)$	$362(10)$	$7052(26)$	$872(15)$	$70(7)$

empirical isotropic extinction parameter x refined to $3.2(3) \times 10^{-6}$, where $\left|F_{c}\right|$ was multiplied by $\left(1-x\left|F_{c}\right|^{2} / \sin \theta\right)$. Final positional parameters are given in Tables 1 and 2, bond lengths and angles for the non-hydrogen atoms in Tables 3 and 4.* $\mathrm{C}-\mathrm{H}$ lengths were in the range 0.92 to $1.03 \AA$ (mean $0.96 \AA$), and $\mathrm{C}-\mathrm{C}-\mathrm{H}$ angles in the range 116.3 to 123.4° (mean 120.0°), consistent with $s p^{2}$-hybridized C atoms.

Discussion. The molecule (Fig. 1) possesses an approximate non-crystallographic twofold symmetry axis

[^0]Table 3. Bond lengths (\AA)

$\mathrm{O}(11)-\mathrm{P}$	$1.780(3)$	$\mathrm{O}(21)-\mathbf{P}$	$1.782(3)$
$\mathrm{C}(12)-\mathrm{P}$	$1.799(4)$	$\mathrm{C}(22)-\mathrm{P}$	$1.803(4)$
$\mathrm{C}(32)-\mathrm{P}$	$1.802(4)$	$\mathrm{C}(32)-\mathrm{C}(31)$	$1.386(3)$
$\mathrm{C}(33)-\mathrm{C}(32)$	$1.389(4)$	$\mathrm{C}(34)-\mathrm{C}(33)$	$1.377(4)$
$\mathrm{C}(35)-\mathrm{C}(34)$	$1.374(4)$	$\mathrm{C}(36)-\mathrm{C}(35)$	$1.367(5)$
$\mathrm{C}(36)-\mathrm{C}(31)$	$1.387(4)$	$\mathrm{C}(10)-\mathrm{O}(11)$	$1.332(3)$
$\mathrm{C}(20)-\mathrm{O}(21)$	$1.340(3)$	$\mathrm{C}(10)-\mathrm{O}(12)$	$1.205(3)$
$\mathrm{C}(20)-\mathrm{O}(22)$	$1.208(3)$	$\mathrm{C}(11)-\mathrm{C}(10)$	$1.485(4)$
$\mathrm{C}(21)-\mathrm{C}(20)$	$1.472(4)$	$\mathrm{C}(12)-\mathrm{C}(11)$	$1.391(3)$
$\mathrm{C}(22)-\mathrm{C}(21)$	$1.388(4)$	$\mathrm{C}(13)-\mathrm{C}(12)$	$1.398(4)$
$\mathrm{C}(23)-\mathrm{C}(22)$	$1.381(4)$	$\mathrm{C}(14)-\mathrm{C}(13)$	$1.384(4)$
$\mathrm{C}(24)-\mathrm{C}(23)$	$1.386(4)$	$\mathrm{C}(15)-\mathrm{C}(14)$	$1.382(4)$
$\mathrm{C}(25)-\mathrm{C}(24)$	$1.372(5)$	$\mathrm{C}(16)-\mathrm{C}(15)$	$1.377(4)$
$\mathrm{C}(26)-\mathrm{C}(25)$	$1.381(5)$	$\mathrm{C}(16)-\mathrm{C}(11)$	$1.375(4)$
$\mathrm{C}(26)-\mathrm{C}(21)$	$1.382(4)$		

Table 4. Bond angles $\left({ }^{\circ}\right)$

$\mathrm{C}(12)-\mathrm{P}-\mathrm{O}(11)$	$88 \cdot 2$ (2)	$\mathrm{C}(12)-\mathrm{P}-\mathrm{O}(21)$	91.4 (2)
$\mathrm{C}(22)-\mathrm{P}-\mathrm{O}(11)$	91.2 (2)	$\mathrm{C}(22)-\mathrm{P}-\mathrm{O}(21)$	88.3 (2)
$\mathrm{C}(32)-\mathrm{P}-\mathrm{O}(21)$	$90 \cdot 6$ (2)	$\mathrm{C}(32)-\mathrm{P}-\mathrm{O}(11)$	90.2 (2)
$\mathrm{C}(22)-\mathrm{P}-\mathrm{C}(12)$	121.4 (2)	$\mathrm{C}(32)-\mathrm{P}-\mathrm{C}(12)$	$120 \cdot 6$ (2)
$\mathrm{C}(32)-\mathrm{P}-\mathrm{C}(22)$	$118 \cdot 1$ (2)	$\mathrm{O}(21)-\mathrm{P}-\mathrm{O}(11)$	179.1 (1)
$\mathrm{C}(10)-\mathrm{O}(11)-\mathrm{P}$	$116 \cdot 5$ (2)	$\mathrm{C}(20)-\mathrm{O}(21)-\mathrm{P}$	116.0 (2)
$\mathrm{O}(12)-\mathrm{C}(10)-\mathrm{O}(11)$	$123 \cdot 0$ (3)	$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{O}(11)$	110.4 (2)
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{O}(12)$	$126 \cdot 6$ (3)	$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(10)$	112.9 (2)
$\mathrm{C}(16)-\mathrm{C}(11)-\mathrm{C}(10)$	$125 \cdot 3$ (3)	C(16)-C(11)-C(12)	121.8 (3)
C(11)-C(12)--P	111.9 (2)	$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{P}$	128.7 (2)
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(11)$	119.4 (3)	C(15)-C(14)-C(13)	121.0 (3)
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(14)$	$120 \cdot 9$ (3)	$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(12)$	$118 \cdot 5$ (3)
C(15)-C(16)-C(11)	118.4 (3)	$\mathrm{O}(22)-\mathrm{C}(20)-\mathrm{O}(21)$	$122 \cdot 5$ (3)
$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{O}(21)$	$110 \cdot 6$ (3)	$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{O}(22)$	$126 \cdot 9$ (3)
$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{C}(20)$	113.6 (2)	$\mathrm{C}(26)-\mathrm{C}(21)-\mathrm{C}(20)$	$125 \cdot 1$ (3)
$\mathrm{C}(26)-\mathrm{C}(21)-\mathrm{C}(22)$	121.3 (3)	$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{P}$	111.5 (2)
C(23)-C(22)-P	129.0 (3)	$\mathrm{C}(23)-\mathrm{C}(22)-\mathrm{C}(21)$	119.5 (3)
C(24)-C(23)-C(22)	118.9 (3)	C(25)-C(24)-C(23)	121.2 (3)
C(26)-C(25)-C(24)	$120 \cdot 3$ (3)	$\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{C}(21)$	$118 \cdot 6$ (3)
$\mathrm{C}(36)-\mathrm{C}(31)-\mathrm{C}(32)$	$120 \cdot 2$ (3)	C(31)-C(32)-P	121.4 (2)
C(33)-C(32)-P	119.3 (2)	C(33)-C(32)-C(31)	119.4 (3)
C(34)-C(33)-C(32)	119.7 (3)	$\mathrm{C}(35)-\mathrm{C}(34)-\mathrm{C}(33)$	$120 \cdot 6$ (3)
C(36)-C(35)-C(34)	120.4 (3)	$\mathrm{C}(35)-\mathrm{C}(36)-\mathrm{C}(31)$	119.7 (3)

along $\mathrm{P}-\mathrm{C}(32)$. The coordination of P is close to ideal trigonal bipyramidal, with, as usual, the most electronegative ligands axial; three C atoms occupy the equatorial positions. The unstrained geometry possibly accounts for the high thermal stability of the compound. Much more distorted trigonal-bipyramidal coordination (Cadogan, Gould, Gould, Sadler, Swire \& Tait, 1975; Carrell, Berman, Ricci, Hamilton, Ramirez, Marecek, Kramer \& Ugi, 1975) or square-pyramidal structures (Wunderlich, Mootz, Schmutzler \& Wieber, 1974; Howard, Russell \& Trippett, 1973) have been found for other phosphoranes studied by X-ray diffraction. A similar ligand arrangement is found in $\mathrm{Se}\left(\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{O}_{2}\right)_{2}$ (Dahlén, 1974) and $\mathrm{S}\left(\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{O}_{2}\right)_{2}$ (Kálmán, Sasvári \& Kapovits, 1973), but the replacement of the equatorial phenyl group by a lone pair causes much larger distortions from idealized trigonalbipyramidal geometry. The phenyl group is twisted by 35.7° out of the equatorial plane, possibly to minimize

Fig. I. The labelling scheme of the title compound.
repulsions involving the ortho H atoms. $\mathrm{C}(10)-\mathrm{C}(11)$ [1.485 (4)] and C(20)-C(21) [1.472 (4) \AA] are consistent with single bonds between $s p^{2}$-hybridized C atoms, indicating little electron delocalization in the fivemembered $\mathrm{P}-\mathrm{O}-\mathrm{C}-\mathrm{C}-\mathrm{C}$ - rings, but the shortness of $\mathrm{C}(10)-\mathrm{O}(11)$ and $\mathrm{C}(20)-\mathrm{O}(21)$ suggests that significant multiple-bond character should be assigned to them.

We thank Dr I. Granoth and Dr Y. Segall for providing the crystals, the Universidad de Los Andes for a Fellowship to AVR, and the Science Research Council for a contribution towards the cost of the diffractometer. Calculations were performed on the Cambridge University IBM 370/165 computer with programs written by GMS.

References

Cadogan, J. I. G., Gould, R. O., Gould, S. E. B., Sadler, P. A., Swire, S. J. \& Tait, B. S. (1975). J. Chem. Soc. Perkin Trans. 1, pp. 2392-2395.
Carrell, H. L., Berman, h. M., Ricci, J. S., Hamilton, W. C., Ramirez, F., Marecek, J. F., Kramer, L. \& Ugi, I. (1975). J. Am. Chem. Soc. 97, 38-46.

Dahlén, B. (1974). Acta Cryst. B30, 647-651.
Howard, J. A., Russell, D. R. \& Trippett, S. (1973). J. Chem. Soc. Chem. Commun. pp. 856-857.
Kálmán, A., Sasvári, K. \& Kapovits, I. (1973). Acta Cryst. B29, 355-357.
Segall, Y. \& Granoth, I. (1977). Abstr., 44th Ann. Meet. Israel Chem. Soc., OR-10.
Segall, Y., Granoth, I., Kalir, A. \& Bergmann, E. D. (1975). J. Chem. Soc. Chem. Commun. p. 399.

Wunderlich, h., Mootz, D., Schmutzler, R. \& Wieber, M. (1974). Z. Naturforsch. Teil B, 29, 32-34.

Hydrogen-Bond Motifs of Carboxylic Acids: The α Form of Cyanoacetic Acid at $-150^{\circ} \mathrm{C}$

By J. A. Kanters, G. Roelofsen and L. H. Straver
Structural Chemistry Group, Rijksuniversiteit Utrecht, Padualaan 8, Utrecht, The Netherlands

(Received 5 December 1977; accepted 30 December 1977)

Abstract

C}_{3} \mathrm{H}_{3} \mathrm{NO}_{2}\), monoclinic, $\quad P 2_{1} / c, \quad a=$ 11.629 (6), $b=7.761$ (3), $c=13.758$ (3) $\AA, \beta=$ $108.92(3)^{\circ}, Z=12, D_{c}=1.460 \mathrm{~g} \mathrm{~cm}^{-3}$ at $-150^{\circ} \mathrm{C}$. The structure contains two types of hydrogen-bond motifs. The asymmetric unit consists of three independent molecules. One molecule forms cyclic dimers by carboxyl-group coupling across centres of symmetry, the other two form separate infinite $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$-linked polymers.

Introduction. $\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{NO}_{2}$ exists in two distinct crystalline varieties (Schaum, Schaeling \& Klausing, 1916). Sublimation in vacuo at a temperature of $70^{\circ} \mathrm{C}$ yielded the monoclinic modification, which was also obtained by recrystallization from ether. Since Sinha \& Katon (1972), from changes upon cooling of IR and Raman spectra of cyanoacetic acid, inferred an order-disorder
transition relating to the hydrogen-bond system, the structure has been determined at room and liquidnitrogen temperatures. As the results of both structure determinations, which were performed to elucidate the hydrogen-bond motif, only differ within experimental error, the low-temperature structure is reported.

A hexagonal rod-like crystal $0.5 \times 0.2 \times 0.1 \mathrm{~mm}$ was sealed in a capillary tube because of its very hygroscopic character. Cell dimensions and 1075 intensities $\left(\sin \theta / \lambda<0.48 \AA^{-1}\right)$ were measured with an $\omega-2 \theta$ scan and Mo $K a$ radiation ($\lambda=0.71069 \AA$) on a Nonius CAD-4 computer-controlled diffractometer. 195 reflexions with $I<2.5 \sigma(I)$ were considered unobserved and given zero weight in the refinement. After Lorentz and polarization corrections the data were placed on an approximate absolute scale by means of a Wilson (1942) plot and a correction for

[^0]: *Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 33350 (15 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH1 INZ, England.

